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Many problems of mechanics and automatic control lead of necessity to 
the consideration of motions of systems containing nonlinear elements, 
with discontinuous characteristics and being subject to the action of 
periodically changing perturbations. the frequencies of which are con- 
siderably higher than those of the basic steady or quasi-stationary 
motion of the system. 

In such cases the equations of motion admit, as a rule, a solution 
which consists of two terms: the first term corresponds to the basic 
(slow) motion, while the second contains high-frequency components, the 
amplitudes of which are relatively small in comparison with the term 
corresponding to the basic motion. 

In order to obtain the differential equations describing the variation 
of the slow component, procedures have been used which are known as the 
methods of vibrational linearization or vibrational smoothing [l-3 1. 
Recently, by means of these methods, results have been obtained [2-6 I 
which are of primary importance for applications. 

Popov [6 1 proposed the use of vibrationally linearized equations for 
determining not only the basic slow motion of the system but also its 
stability. 

Without trying to give a rigorous foundation to the method under con- 
sideration, in the present paper the authors indicate the existence of a 
certain condition to be satisfied in order that the arguments on which 
this method is based be correct. The fact is that the basic motion of 
the system can be a slow one, while the small deviations from that motion 
caused by the perturbations can turn out to be rapid motions for the de- 
scription of which the vibrationally linearized equations are useless. 
Therefore, using the vibrationally linearized equations in a stability 
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problem, it is necessary to verify that the non-stationary motions de- 
scribed by these equations are also sufficiently slow in comparison with 
the speed of variation of the vibrational component conditioning the 
linearization. 

1. Consider a system, the differential equation of 
of the form 

motion of which is 

Q (~1~ + R (14 F (4 = S1 (14 fl(l) + Sz (1-9 fa (1) (1.1) 

where Q(p), R(p), S1(p) and S2(p) are differential operators which in 
turn are polynomials of the operator p = d/dt; t is the time, x a 
generalized coordinate and F(x) a nonlinear function. 

Let the external action be a function of t, say f,(t), which is 
characterized by the frequency o. the latter being considerably smaller 
than the frequency fi of the function f*(t) which, for reasons of simpli- 

city, is assumed to be harmonic, i.e. 

/2 (I) == U sin Qt (1.2) 

In order to solve the problem approximately we usually proceed as 
follows [2 I. We seek this solution in the form 

Z (t) = z” (t) + 2+ (1) (1.3) 

where x*(t) = A sin(Qt + 4); x0(t) is a slowly varying component (A and 
4 are slowly changing functions of time). 

Substituting (1.3) into (1.1) we obtain 

Expanding F(x” + x*) into its Fourier series according to the 
harmonics sin k(flt + q5) and cos k(flt + $) we have, provided that we 
limit ourselves to the terms with zero- and first-order harmonics (it is 
assumed that higher harmonics of the system are not left out and, con- 
sequently, their omission does not cause any gross errors): 

where 

b’ (X) F” (.c”* .A) + (I (2”. A) 2+ + 4’ @; A) pz++ .‘. (1.5) 
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q’ (IO, A) = ;;?;i- 

l 

1 
F (x” + A sin 9) cos @T$ 

0 

(1 6) 

Taking (1.5) and (1.6) into account we obtain from (1.4) two differ- 
ential equations. One of them determines the basic slow motion while the 
other determines the rapidly changing component of the motion: 

Q (~1 F“ + H (~1 F” W, 4 = & (~1 fltf) (1.7) 

Q fp)x* + fi (P) (qx* + & PX’) = sz (P) fa (1) 

Equation (1.8) determines the amplitude A and the phase $ as func- 
tions of x0. Then, by means of the obtained relation A = A(x’), the ampli- 
tude A is eliminated from the expression of the function F”(xo, A). 
Usually the function @(x0) = F” [x0, d(xo)l is linearized, and for all 
odd symmetrical nonlinearities is finally obtained in the form 

F” .L= a, (x0) z kOxo (I.91 

As a result of this the linearized equation (1.7) for the slowly 
changing component assumes the form 

IQ (PI+ k”R (~11 x0 = G(P) A ftl (1.101 

where the coefficient k” depends, of course, on the amplitude B and the 
frequency fi of the high-frequency action. 

2. Consider, now, the problem of investigating the stability of the 
solution x0(t) + x*(t). Assume for this purpose the existence of a per- 
turbation t(t). If this perturbation is a slowly changing function, then 
it is natural to associate this function with the term x’(t). In such a 
case we can actually conclude that the equation for x0(t) permits us to 
decide the stability of the motion. This is done, for example, in f4-61. 

Generally speaking, however, c(t) can turn out to be a rapidly chang- 
ing function. Then, naturally, on the basis of study of the linearized 
equation, an authentic judgement concerning the stability cannot be ob- 
tained, the reason being that this equation is valid only for motions 
which are sufficiently slow in comparison with the rate of change of the 
high-frequency component. It is possible that the non-stationary motions 
described by the vibrationally linearized equations turn out to be rapid 
motions even if the usual requirement concerning the filter properties 
of the high frequencies of the linear part of the system is satisfied, 
i.e. under the condition of sufficient slowness of the free vibrations 
of the linear part of the system. The above will be illustrated by the 
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example given be low. 

3. Consider a system with one degree of freedom, the motion of which 

is described by the equation 

where 
‘& + k2x + F (x) = B, sin tit + B sin fit [3. I I 

c x>o 

F (x) = 0 x=0 (3 2’) 
-c x<o 

Let fi >> o. Applying the above method we obtain 

2c 4c 
F”m -x0 

-n/l ’ q= TA’ q’=O (I x0 I -=c I ‘4 IJ (3 3) 

Equations (1.7) and (1.8) for the slow and rapid components of motion 

are 

I”+ (kz+$$x’= B,sinot 

-“+ (ka+$)x* = BsinL?t 5 

(3 4) 

(3 3) 

respectively. Seeking the 

A sin(fi t + ~$1 we obtain 

solution of Equation (3.5) in the form X* = 

B--C/n 
A= X_2__Q2 . rp’0 (3 6, 

Then Equation (3.4) assumes the form 

k2 _ Qz 
xo + k2- 2 (1 _-nB,4C) x0 = Bo sin ot 

From here the slow motion we are seeking is obtained in the form 

20 = 4 
k” - Q” sin cot 

k2-u2- :! (I- nB /4C) 

(3.8) 

The last formula, by virtue of (3.3) and (3.6), holds only if the in- 

equality 
1 

I 

BO B-44Cini 
p-Q2 < 

, k2--*- 2(1- nB/4C) 

k2- Q” j 

is satisfied. The latter, however, 

sufficiently small. 

It is not difficult to see that 

(3.8). and also of the slowness of 

without the nonlinear element, the 

holds always provided that Bu is 

in spite of the slowness of the motion 

the free vibrations of the system 

free vibrations described by Equation 
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(3.7) can turn out to be relatively “rapid”. the reason for this being 
that their frequency 

k2-.W 
J.2 = k-2 - 2(1- xBj4C) 

(3.10) 

is sometimes comparable (or even higher) with the frequency a of the 
rapid motion. In fact, let k = 1 set -I, o= 10 set-‘, a= 100 set-‘, 

B = 1, C = l/28. Then 

In such a case, of course, we cannot expect that Equation (3.4) will 
correctly describe even the small deviations from the basic slow motion. 
In fact, neglecting in (3.10) the square of the frequency k in comparison 
with the square of the frequency Q, and assuming that the second term in 
Formula (3.10) is much larger than k2, we obtain the relation 

!2 
h= 

v’2 (i --nB / 4C) 
(3.11) 

from which, by virtue of the assumptions made, follows the stability con- 
dition in the form of the inequality 

Formula (3.11) shows that near the “boundary of the stability* 
1 - R B/4C = 0. determined by the vibrationally linearized equation, the 
frequency of the perturbed motion h is very large. Therefore, for the 
example under consideration, the condition of stability (3.12) cannot be 
considered as even vaguely proved. 

The result obtained convincingly shows the necessity of the above- 
formulated requirement for the sufficient slowness of the perturbed 
motion in comparison with the rapidity of the change of the high-frequency 
component. 
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